Oscylator urządzenia zegarowego, jest generatorem podstawy czasu i wspólnie z wychwytem są w największym stopniu odpowiedzialne za dokładność działania zegara. Drgania oscylatora są podtrzymywane dzięki energii zgromadzonej w module napędu, transmitowanej przez przekładnię chodu do oscylatora. Jest ona impulsowo przekazywana poprzez wychwyt.
Drgania oscylatora są zliczane przez przekładnię wskazań, napędzaną przez przekładnię chodu. Prędkość obrotowa przekładni chodu jest zależna od okresu drgań oscylatora, współpracującego z nią dzięki działaniu wychwytu.
Energia dostarczona do oscylatora, jest całkowicie rozpraszana poprzez tarcie (cierne w łożyskach, aerodynamiczne wynikające z ruchu balansu i wewnątrzcząsteczkowe w sprężynie włosowej).
Tylko w zegarach stacjonarnych oscylatorem może być wahadło. W zegarach noszonych, czyli zegarkach - oscylatorem musi być element, na którego działanie nie ma wpływu przemieszczanie się zegara. Takim, praktycznie jedynym stosowanym w zegarkach mechanicznych, oscylatorem jest balans.
Balansem nazywamy masę, która dzięki działaniu spiralnej sprężyny zwrotnej, wykonuje ruch oscylacyjny wokół osi przechodzącej przez jej środek ciężkości. Balans zegarka składa się z: koła, osi, sprężyny włosowej i przerzutnika. Dzięki odpowiedniemu ukształtowaniu koła balansu, można w przybliżeniu przyjąć, że cała masa balansu skupiona jest na jego obwodzie. Sprężyna zwrotna ma zwykle kształt spirali Archimedesa, której wewnętrzny koniec przytwierdzony jest do wałka balansu, a zewnętrzny (nieruchomy) do korpusu mechanizmu. Okres balansu wzrasta wraz ze wzrostem jego momentu bezwładności względem osi obrotu (I) i długości sprężyny włosowej (L), oraz maleje wraz ze wzrostem stałej sprężystości materiału z którego wykonano sprężynę włosową (E), jej wysokości (s) i grubości (h).
Stopień wrażliwości balansu na zakłócenia mechaniczne (drgania i uderzenia) zależy w znacznym stopniu, od energii własnej poruszającego się balansu, która jest pochodną momentu bezwładności balansu i częstotliwości jego drgań (im większa bezwładność i częstotliwość, tym mniejsza wrażliwość na zakłócenia). Zgodnie z zależnością na okres balansu, nie można uzyskać wysokiej częstotliwości drgań przy dużej jego bezwładności.
W konstrukcji osi balansu mamy także do czynienia z dwiema przeciwstawnymi sobie zależnościami. Czopy osi balansu powinny być jak najcieńsze, by minimalizować opór tarcia i jak najgrubsze, by przy jak największej bezwładności balansu zbyt łatwo nie pękała. Obydwa te parametry mają wpływ na dokładność urządzenia zegarowego. Dla zminimalizowania sił tarcia w łożyskach balansu, poprzez uniknięcie styku łożyska ze stosunkowo dużą płaszczyzną osi balansowej, stosuje się kamienie nakrywkowe. Takie rozwiązanie kasuje luzy poosiowe i zapewnia, że niezależnie od położenia mechanizmu, oś balansu pracuje tylko na powierzchniach walcowych, lub czołowych swoich czopów.
Na dokładność oscylacji balansu, szczególnie przy zmianach położenia i zmiennej amplitudzie (maksymalne wychylenie balansu od położenia równowagi) ma wpływ jego niewyrównoważenie (brak sprowadzenia środka bezwładności balansu do osi obrotu). Dla łatwiejszego przeprowadzenia procesu sprowadzenia środka ciężkości do osi obrotu, balans na wieńcu koła balansowego może posiadać wkręty, którymi, dzięki stosowaniu podkładek doprowadza się do jego wyrównoważenia.
Balans aerodynamiczny (wywołujący mniejszy opór powietrza) nie posiada wkrętów na wieńcu koła, a wyrównoważenie odbywa się poprzez nawiercanie (usunięcie materiału) koła balansowego.
O ile dziś, nie ma większego problemu z wyrównoważeniem balansu (także dynamicznym), a do tego bezwładność sprężyny włosowej jest znikoma w stosunku do bezwładności całego balansu, to w historii zegarmistrzostwa obydwa te elementy miały duże znaczenie.
Stosunkowo ciężka sprężyna włosowa, zmieniająca położenie swojego środka bezwładności na skutek skręcania i rozprężania się, znacząco wpływała na dokładność działania zegarka. Dla ograniczenia tego błędu prowadzonych było wiele prób różnego ukształtowania końca włosa (krzywa końcowa) jak i jego początku (krzywa początkowa), by zminimalizować przemieszczania się jego środka ciężkości. Powszechnie stosowanym stało się rozwiązanie Abrahama Luisa Bregueta, w którym około trzy czwarte ostatniego zwoju jest podniesiona w stosunku do płaszczyzny tworzonej przez spiralę i ma inny kształt.
Istotnym elementem wpływającym na zmianę dokładności działania zegarka, jest zmiana parametrów balansu (zmiany wymiarów balansu i sprężystości sprężyny włosowej) pod wpływem zmiany temperatury. Dla uniknięcia tego wpływu, w historii zegarków stosowano koła balansowe kompensacyjne. Dziś wpływ ten można zminimalizować poprzez zastosowanie koła balansowego wykonanego ze stopu zwanego „glucydur” i sprężyny włosowej wykonanej z „nivaroxu”.
W naszym zegarku bazowym, mamy do czynienia z kołem balansowym wykonanym z mosiądzu, z wkrętami, lub bez, ze sprężyną włosową bregetowską lub płaską, wykonaną z nivaroxu. Balans pracuje w łożyskach z kamieniami nakrywkowymi mocowanymi na sztywno.
Władysław Meller
Rozwinięcie tego tematu, znajduje się w kolejnych publikacjach na podstronie:
https://zegarkiipasja.pl/wiedza/komplikacje-konstrukcji-mechanizmow